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Abstract. The generalized hybrid derivative coupling model has been applied to explore various ground
state properties of different nuclei. In this work we have confined our calculation only to the model char-
acterized by the hybridization parameter α = 1/4 which gives better results than the other models of the
same class, as we have seen earlier, for nuclear matter calculations. The binding energy, single-particle
energy spectra, density and charge radii of different doubly closed nuclei like 16O, 40Ca, 48Ca, 90Zr, 132Sn,
208Pb have been studied. The success of this model, in describing the doubly closed nuclei, motivates us to
extend this calculation further in the case of open shell nuclei after incorporating the pairing interaction
and using a BCS transformation. We have calculated the binding energy for such nuclei. We have also
studied the isotopic shift for different Pb isotopes with respect to 208Pb. We have compared our results
with the other standard theoretical results as well as with the experimental values.

PACS. 21.60.Jz Hartree-Fock and random-phase approximation – 21.10.Dr Binding energies and masses

1 Introduction

The purpose of this work is to study the ground state
properties of finite nuclei in the framework of the general-
ized hybrid derivative coupling model [1]. This model has
already been applied to study the properties of symmetric
and asymmetric nuclear matter at zero and finite tempera-
tures and also the phase transition from nuclear matter to
quark matter and from neutron matter to quark matter [2,
3]. In the generalized hybrid derivative coupling model [1]
both Yukawa point coupling and derivative coupling be-
tween the baryon wave function and the scalar meson are
used in the Lagrangian but with unequal strengths unlike
the hybrid derivative coupling model proposed by Glen-
denning et al. [4], where the scalar meson couples with
equal strength to the baryon wave function and its deriva-
tive. The idea of derivative coupling, in nuclear matter
problem, was first introduced by Zimanyi and Moszkowski
[5] to remedy the defects (high bulk modulus and low nu-
cleon effective mass) of the linear σ-ω model originally
proposed by Walecka [6], where only Yukawa point cou-
pling between the nucleon and the baryon wave function
is assumed. But this model (hereafter referred to as ZM),
when applied to finite nucleus, cannot reproduce the cor-
rect spin-orbit splitting. However, some variations of ZM
model give better results in the case of finite nuclei [7].
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Recently Hua et al. [8] obtained a better result for spin-
orbit potential by introducing a tensor coupling term in
the original Zimanyi-Moszkowski model [5]. However, they
[8] have confined their calculations only to the case of
spherical nucleus 208Pb. In our model [1] we have taken
the strength of the Yukawa point coupling and that of the
derivative coupling in the ratio (1−α)/α, where α is called
hybridization parameter.

Suitable values of the hybridization parameter α are
chosen so that satisfactory results for nuclear matter prop-
erties like the compression modulus (K), effective nucleon
mass M∗, binding energy per nucleon (ε/ρ−M), symme-
try energy Esym and saturation nuclear matter density ρ0

are reproduced. In our calculation we have found that the
model characterized by α = 1/4 can give better results
than other models existing in the literature for infinite
nuclear matter [1]. This has led us to apply it to study
the properties of finite nuclei. In this work we shall focus
our attention only on the model characterized by α = 1/4
and compare our results with those obtained by different
models and also with the experimental results.

We study the various ground state properties like the
binding energy, single-particle energy spectra, density and
charge radii of a number of magic nuclei. The present cal-
culation gives a better result than any model which uses
the same number of adjustable parameters. The general-
ized Wallecka model which includes the ρ meson and the
photon, failed to reproduce the compressibility of nuclear
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matter and the binding energy of finite nuclei [9,10]. Two
nonlinear meson self-interaction terms had to be included
for a correct description of the binding energy and the de-
formation of finite nuclei [9]. Thus, this model [9] requires
eight parameters in contrast to seven parameters used in
the hybrid derivative coupling model (including the hy-
bridization parameter). A fit of the finite nuclear prop-
erties yet required a negative quartic term which makes
the model unbounded from below [11]. In contrast, the
derivative coupling model does not suffer from this prob-
lem. We also extend our calculation to open shell nuclei by
including pairing and study a number of spherical nuclei
throughout the periodic table. We would like to emphasize
that the aim of the present work is to study the suitabil-
ity of the generalized hybrid derivative coupling model to
describe the properties of finite nuclei. So, no attempt has
been made to modify the parameters by fitting the exper-
imental data available on finite nuclei.

The paper is arranged as follows. In Section 2, we out-
line the theory and write down the necessary equations.
The results of our calculations are presented next in Sec-
tion 3. Finally, we summarize our findings and conclude
in Section 4.

2 Theory

The details of the general form of the hybrid derivative
coupling model have already been given in our earlier
publications [1–3]. We give here a brief description of the
above model for finite nucleus, where an additional con-
tribution due to photon and its coupling to the proton is
to be considered. We consider the following form of La-
grangian density for the finite nucleus:
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where ψ denotes a baryon (neutron and proton) wave func-
tion of massM . σ, ωµ, and ρµ are isoscalar scalar, isoscalar
vector and isovector vector meson fields with masses mσ,
mω and mρ, respectively. The coupling constants for the
σ-, the ω-, the ρ-mesons and for the photon (Aµ) are gσ,
gω, gρ and e2/4π = 1/137, respectively. As usual the quan-
tities ωµν , ρµν and Aµν are the antisymmetric field ten-
sors for the ω-, ρ-mesons and for the electromagnetic field,
respectively. Equation (1) implies that the ratio of the
strength of Yukawa point coupling and that of the deriva-
tive coupling is given by (1 − α)/α. A suitable value of

α may be chosen to give satisfactory results for the bulk
properties of nuclear matter. It is also evident from eq. (1)
that there is coupling between the scalar meson and the
vector meson. The above Lagrangian is Lorentz invariant
but not renormalizable. However, as the nuclear field the-
ory is an effective theory, this nonrenomalizibility of the
Lagrangian may not be a “weighty objection” [4]. How-
ever, we will not use the above Lagrangian Linitial in this
paper, rather we will work with the following transformed
Lagrangian:
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which has been obtained from (1) by rescaling [1,4,5] the
baryon wave function in the following way:

ψ →
(
1 + α

σgσ

M

)−1/2

ψ . (3)

The effective nucleon mass occurring in (2) is given by

M∗ =
1− (1− α)σgσ/M

1 + ασgσ/M
M . (4)

Here, we shall treat the Lagrangian (2) in the fre-
quently used mean-field approximation (Hartree) in which
the meson fields σ, ωµ, ρµ and Aµ behave as classical fields
and the nucleons as point-like particles. Using time rever-
sal symmetry it is possible to eliminate the spatial vector
components of ωµ, ρµ and Aµ and only the time-like com-
ponents ω0, ρ0 and A0 will contribute. Furthermore, for
static solutions the meson fields are time independent. Un-
der these approximations and by the classical variational
principle, the equations of motion for the meson as well
as nucleons are
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Among the Klein-Gordon equations, only the first

equation is different from the conventional RMF equa-
tions while the Dirac equation differs in the expression of
the effective mass term. In the present work, we restrict
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ourselves to the case of spherically symmetric mean fields
i.e. σ(r) = σ(r), etc. The different densities occurring in
the above eqs. (5)-(8), after the inclusion of the pairing in-
teraction through BCS technique, have the standard form
as in other RMF calculations. We have used the constant
gap approach with the gap being taken following the pre-
scription [12] ∆ = 11.2/

√
Z(N) for proton (neutron) for

open shell.
The nuclear radial wave functions are then determined

by the following coupled differential equations:
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where Gβ and Fβ are the radial wave functions for the
upper and lower components of the Dirac spinor ψβ given
by

ψβ(r) =
(

iGβ(r)Φβ(θ, φ, s)/r
−Fβ(r)Φ−β(θ, φ, s)/r

)
ηt , (12)

where the symbols have the usual meaning. They are nor-
malized to ∫ ∞

0

dr{| Gβ |2 + | Fβ |2} = 1 . (13)

Instead of the term gσσ as in the Walecka model
[6] or gσσ/(1 + gσσ/M) as in the Zimanyi-Moszkowski
model [5] or gσσ/2(1+ gσσ/2M)−1 as in the Glendenning
model [4], the nucleon equations in (10)-(11) have the term
σgσ(1−α)(1 +α gσ

M σ)−1 in the generalized hybrid deriva-
tive coupling model. Actually the essential difference lies
in the σ field equation (5) which has now become nonlin-
ear.

The problem is treated in the coordinates space. The
above coupled nonlinear differential equations (5)-(8) and
(10)-(11) for finite spherical nuclei are solved by an itera-
tive method. For a given set of potentials for the mesons,
Dirac equations (10) and (11) may be solved to deter-
mine the eigenvalues εβ . Once the nuclear wave functions
have been calculated and inserted, the source terms may
be calculated in the usual manner. Equations (5)-(8) then
may be solved and improved values of the fields obtained,

which are again inserted in the Dirac equations (10) and
(11). This continues until the solution converges. The it-
eration is started with a Woods-Saxon potential for the
meson fields.

The total binding energy is given by
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Here Ec.m. is nothing but the zero-point energy cor-
rection term that arises due to the nonrelativistic centre-
of-mass motion in the mean field and A is the nucleon
number. Epair is the pairing energy.

The charge radius (in fm) can be calculated by using
the following simple relation:

rc =
√

r2
p + 0.65 . (22)

The factor 0.65 in eq. (22) accounts for the finite-size ef-
fects of the proton. Taking into account the finite size of
the proton, the charge density ρp is calculated by the fold-
ing integral:

ρch(r) =
∫

ρp(r′)g(r − r′)d3r′ , (23)

where the form factor g(r) is given by

g(r) =
µ3

8π
exp[−µ|r|] , (24)

with µ=845 MeV.

3 Results

The first task before us is to fix the parameters of the
Lagrangian density of (2). There are six free parameters to
be determined in the present approach, namely, the masses
of the three mesons and the three coupling constants. In a
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Table 1. The values of the different parameters assumed in the present calculation for the model characterized by α = 1/4.
The saturated nuclear matter properties for this parameter set are also included.

Meson masses Coupling strengths Saturated nuclear matter properties

mσ mω mρ g2
σ g2

ω g2
ρ ρ0 (ε/ρ − M) Esym M∗ K

MeV MeV MeV fm−3 MeV MeV MeV MeV

526.0 783.0 763.0 73.741 94.565 69.932 0.159 −16 34 685.5 307

nuclear matter calculation there are three free parameters,
given by

C2
a =

g2
aM

2

m2
a

, (25)

where the index a refers to σ, ω or ρ. The values of these
parameters for the hybrid derivative coupling which re-
produce the properties of the saturated nuclear matter
have already been obtained [3]. Keeping those values un-
changed means that only three parameters can be varied
freely to reproduce the results for the finite nuclei. As our
intention is to explore the applicability of the present La-
grangian density to describe the ground state properties
of finite nuclei, we have not varied the meson masses to
assume a good fit but, instead, assumed the usual val-
ues. Table 1 lists the values of the coupling constants and
the meson masses and also the corresponding saturation
nuclear matter properties for the model characterized by
the hybridization parameter α=1/4. The nucleon mass is
taken to be 939 MeV. The grid size is taken to be 0.04 fm.

We have used the present Lagrangian to calculate the
different ground state properties of a number of doubly
and singly closed shell nuclei throughout the periodic ta-
ble. In table 2, we summarise the results obtained using
the present approach as well as some other methods for
a number of doubly closed shell nuclei. Here ZM refers to
the original Zimanyi-Moszkowski model, ZM3 refers to the
modified Zimanyi-Moszkowski model as applied in [7], GL
refers to the hybrid derivative coupling model of Glenden-
ing et al. [4] and NL1 refers to the mean-field Lagrangian
of [10] using the parameter set NL1. The next column (in-
dicated by Pres.) shows the results obtained in the present
calculation. For comparison, the experimental values are
given in the last column. The first two results are taken
from [7] after adding a correction due to the centre-of-
mass energy. This correction makes the ZM3 calculation
explain the binding energies better. The parameter sets
for the first two results are given in [7]. The parameter
set for GL has been fixed by using the parameters for the
infinite nuclear matter from [4] and keeping the meson
masses identical with the calculations cited earlier [7]. One
can see that the present work gives a better description of
the different experimental quantities than the first three
calculations. Binding energies of almost all the nuclei are
predicted more accurately than the first three methods. A
better description of the spin-orbit splitting is obtained in
almost all cases in our model. In short, the present model
with α = 1/4 gives the most accurate description of the
different ground state properties of magic nuclei among
other models which use the same number of parameters.

Fig. 1. Comparison of experimental and theoretically calcu-
lated charge density for 16O as a function of radius. The solid
line represents the experimental result taken from [13]. The
dots represent theoretically calculated values.

Fig. 2. Comparison of experimental and theoretically calcu-
lated charge density for 208Pb as a function of radius. The
solid line represents the experimental result taken from [13].
The dots represent theoretically calculated values.

In figs. 1 and 2, we plot the charge densities for 16O
and 208Pb, respectively, calculated following the procedure
discussed in the previous section and compare with the ex-
perimental charge distributions [13] (solid curve). Our cal-
culation, in agreement with other relativistic works, shows
a slight depression at the centre of the nucleus, a fact that
has been verified by experiments. There is some uncer-



B. Malakar and G. Gangopadhyay: Hybrid derivative coupling for finite nuclei 271

Table 2. Table showing different quantities for a number of closed shell nuclei calculated using different methods as well as the
experimental values. All the energy values are in MeV and the radii are in fm. See text for more details.

Nucleus Quantity ZMa ZM3a GL NL1b Pres. Expt.
16O B.E. 9.16 8.26 8.46 7.95 8.09 7.98

rch 2.64 2.78 2.63 2.77 2.65 2.73c

∆E(1p3/2-1p1/2) 1.4 2.8 2.2 6.1 3.3 6.1
40Ca B.E. 9.23 8.65 8.76 8.56 8.56 8.55

rch 3.39 3.51 3.35 3.50 3.38 3.48c

∆E(1d5/2-1d3/2) 1.5 3.1 2.3 6.8 3.5 6.3
48Ca B.E. 8.96 8.48 8.58 8.60 8.59 8.67

rch 3.47 3.57 3.41 3.49 3.43 3.47c

∆E(1d5/2-1d3/2) 1.1 2.5 1.9 6.4 3.0 3.6
90Zr B.E. 8.88 8.53 8.59 8.72 8.62 8.71

rch 4.25 4.35 4.17 4.28 4.24 4.27c

132Sn B.E. 8.27 8.32 8.26 8.35

rch 4.65 4.73 4.65
208Pb B.E. 7.88 7.68 7.71 7.89 7.77 7.87

rch 5.54 5.66 5.41 5.52 5.42 5.50c

∆E(2p3/2-2p1/2) 0.4 0.9 0.4 1.1 0.6 0.5

∆E(2f7/2-2f5/2) 0.5 1.2 0.8 1.9 1.3 1.8

∆E(3p3/2-3p1/2) 0.2 0.4 0.3 0.8 0.4 0.9

a Taken from [7] after adding centre-of-mass energy correction.
b Using the parameter set NL1 [10].
c Taken from the compilation [13].

Fig. 3. Single-particle energy levels around the Fermi level for
16O. The full (dotted) lines indicate filled (empty) levels.

tainty in the experimental charge density deep inside the
nucleus. However, the description of the surface is poor
compared to other conventional mean-field theories.

The spin-orbit potential, in our calculation, is stronger
compared to the ZM or the ZM3 calculation as obtained
in [7]. This leads to a larger spin-orbit splitting in the
present model than in the conventional derivative coupling
models. However, the description is still poor compared to
the conventional RMF calculations and to the experiment.
Figures 3 and 4 compare the theoretically predicted and
the experimentally observed energies of the single-particle
levels around the Fermi level of 16O and 208Pb, respec-
tively.

Fig. 4. Single-particle energy levels around the Fermi level for
208Pb. The full (dotted) lines indicate filled (empty) levels.

Observing that the present approach gives a consis-
tently good description of closed shell nuclei, we apply it
to a number of singly closed shell nuclei throughout the
periodic table. We have not come across any other calcu-
lation in open shell nuclei in the framework of the deriva-
tive coupling model or the hybridized derivative coupling
model. A BCS calculation in the constant gap method has
been applied to find out the pairing energy and the occu-
pancies of the different levels. We confine our calculations
to singly closed shell nuclei as these nuclei are expected
to be very nearly spherical. The calculated binding ener-
gies are compared with the experimental values in table 3.
One can see that the isotopic and isotonic trends in bind-
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Table 3. Table showing binding energy and radius values cal-
culated using the present approach as well as the experimental
values for a number of singly closed shell nuclei.

Nucleus Theoretical Experimental

B.E.(MeV) rch(fm) B.E.(MeV) rch(fm)
42Ca 8.63 3.39 8.62
44Ca 8.61 3.40 8.66
46Ca 8.57 3.41 8.67
86Zr 8.51 4.17 8.61
88Zr 8.55 4.18 8.67
92Zr 8.57 4.21 8.69 4.30a

94Zr 8.55 4.22 8.67 4.32a

86Kr 8.59 4.10 8.71
88Sr 8.61 4.15 8.73 4.21a

92Mo 8.50 4.24 8.66 4.31a

94Ru 8.40 4.29 8.58
116Sn 8.42 4.53 8.52 4.63b

118Sn 8.42 4.54 8.52 4.64b

120Sn 8.40 4.56 8.50 4.65b

122Sn 8.39 4.57 8.49 4.66b

124Sn 8.36 4.58 8.47 4.67b

126Sn 8.33 4.60 8.44
128Sn 8.30 4.62 8.42
130Sn 8.27 4.63 8.39
204Pb 7.77 5.40 7.88
206Pb 7.77 5.41 7.88 5.49a

210Pb 7.75 5.43 7.84
212Pb 7.74 5.45 7.80
214Pb 7.72 5.47 7.77

a Taken from the compilation [13].
b Data from muonic atom measurement [14].

ing energy values are reproduced in most cases although
the average deviation is nearly one percent. For example,
in the Sn isotopes, the difference between the calculated
and the experimental binding energy per nucleon varies
smoothly from 0.10 MeV to 0.12 MeV. The calculated
charge radii are also compared with the experimentally
observed values wherever available.

A very important quantity that changes with neutron
number and has been measured very accurately is the iso-
topic shift δ〈r2〉, i.e. the change in the mean-square radius
with mass number. In table 4, we compare the calculated
isotopic shift in the Pb isotopes with respect to 208Pb with
experimentally measured values. In very light nuclei, one
of the main reasons for the deviation may be that these
nuclei are deformed and our calculation does not take this
factor into account. Isotopic shifts near the closed shell
are nicely reproduced.

A better description of the different ground state prop-
erties may be obtained by changing the parameters, viz.
the coupling constants and the meson masses. However

Table 4. Table showing isotopic shifts in the Pb isotopes with
respect to 208Pb.

Mass Number Isotopic shift (fm2)

Theo. Exp.

192 −0.9031 −0.757a

194 −0.7870 −0.682a

196 −0.6696 −0.605a

202 −0.3183 −0.3280b

204 −0.2063 −0.2231b

206 −0.0898 −0.1179b

210 0.2027 0.2107b

212 0.3750 0.4144b

214 0.5520 0.6099b

a Reference [15].
b Reference [16].

our motivation for this paper is to check the validity of
the present approach as well as the applicability of the
parameters obtained in fitting the saturated nuclear mat-
ter quantities. To this extent, we have refrained from fixing
the parameters by fitting the ground state properties of
closed shell nuclei as is the usually followed procedure.

4 Summary and conclusions

The generalized hybrid derivative coupling model charac-
terized by the hybridization parameter α = 1/4 has been
applied successfully to study various ground state proper-
ties of different nuclei. This model calculation gives bet-
ter results, when compared with the experimental values,
than the other standard model calculations, which use the
same number of adjustable parameters for infinite nuclear
matter as well as for finite nucleus. This model is success-
ful in describing the ground state properties of not only
the doubly closed magic nuclei (like 16O, 40Ca, 48Ca, 90Zr,
132Sn, 208Pb) but also those of the singly closed nuclei
which are expected to be nearly spherical. A more accu-
rate quantitative description of the ground state proper-
ties of finite nuclei may be obtained by further accurate
tuning of coupling constants and meson masses which we
have not done here, as we have mentioned earlier that the
principal motivation of this paper is to check the applica-
bility of the generalized hybrid derivative coupling model
in the case of finite nucleus.

A part of the work has been carried out using the computer
facilities provided by the DSA Programme, Department of
Physics, University of Calcutta.
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